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Abstract 

When applying numerical methods for the computation of stationary waves from 
the Helmholtz equation, one obtains "numerical waves" that are dispersive also in 
nondispersive media. The numerical wave displays a phase velocity that depends 
on the parameter k of the Helmholtz equation. In dispersion analysis, the phase 
difference between the exact and the numerical solutions is investigated. In this 
paper, the authors' recent result on the phase difference for one-dimensional prob- 
lems is numerically evaluated and discussed in the context of other work directed 
to this topic. It is then shown that previous error estimates in integral norm are of 
nondispersive character but hold for medium or high wavenumber on extremely re- 
fined mesh only. On the other hand, recently proven error estimates on normalized 
mesh contain a pollution term. With certain assumptions on the exact solution,. 
this term is of the order of the phase difference. Thus a link is established between 
the results of dispersion analysis and the results of numerical analysis Throughout 
the paper, the presentation and discussion of theoretical results is accompanied by 
numerical evaluation of several model problems. Special attention is given to the 
performance of the Galerkin method with higher order of polynomial approximation 
p (h — p—version). 
FV ' By __  

Distribution/ 

D 

Availability Codes 

Dist 

m. 
Avail and/or 

Special 



Dispersion Analysis and Error Estimation of Galerkin FEM... 2 

1    Introduction 

1. The analytical investigation of waves in nondispersive media is based on the reduced 
wave or Helmholtz equation 

Au + —u = Q (1) 

where 

• CJ is the frequency of a particular sinusoidal (in time) wave and 

• c is the speed of sound, depending upon material properties of the medium only ( 
not on the frequency). 

The ratio k := u/c is called the (scalar) wavenumber. 
It is well known that numerical solutions to the Helmholtz equation, as finite element 

or finite difference solutions, do not preserve the nondispersive character of the mathe- 
matical model and its exact solutions. More specifically, when applying these methods, 
the solutions have the form of dispersive "numerical waves" with a "discrete wavenumber" 
kh that depends on the frequency or, equivalently, on the exact wavenumber k. Thus, 
the numerical waves propagate with a phase velocity & := u>/kh that, in turn, is different 
from the speed of sound c. 

2. In dispersion analysis, the dispersive effects in numerical solutions to the wave 
equation are investigated; some recent publications in this field are [1, 7, 11, 19, 20], see 
also [21]. The conclusions drawn in these references are based on 

• analytical evaluation of dispersive numerical parameters (e.g., the discrete wavenum- 
ber) and 

• discussion of the results of numerical experiments on model problems in one [11,19, 
21], two [7, 20, 21] or three dimensions [1]. 

In applied acoustic computations, the stepsize is usually "normalized" with respect to the 
exact wavelength k; thus, a "rule of the thumb" [11] in these computations is to resolve 
the wavelength by 10 elements (when applying the Galerkin method with standard linear 
elements). This amounts to the formula hk = TT/5. Hence the stepwidth computed by 
the rule, but not the rule itself, depends on the frequency k. In other words, the rule is 
of nondispersive character whereas the numerical solution is dispersive. It is therefore of 
practical interest to explore the implications of numerical dispersion on the accuracy of 
the computed solution [1, 19]. 

The results of dispersion analysis have also led to the Galerkin least-squares meth- 
ods that reduce or even eliminate the dispersive numerical effects by modification of the 
variational model - see Harari and Hughes[ll], Thomson and Pinsky[19]. This topic has 
recently been addressed by one of the present authors in [6] . 
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3. The effect of dispersion in the numerical wavenumber kh is measured either directly, 
by comparing (graphically and analytically by means of Taylor expansions) kh to k, or 
indirectly, by comparing exact stationary waves to their numerical counterparts. In the 
latter case, the dispersive effect shows in the form of a phase lead of the numerical waves, 
causing significant numerical error. Both the direct and indirect dispersive effects grow 
with wavenumber ib, also if the mesh is normalized. It has been established that in one- 
dimensional computations the phase error for the standard Galerkin FEM with linear 
elements is of order 0(k3h2) [11]. 

In [7], Bayliss et al. compute the error of the finite element solution for a two- 
dimensional model problem (Helmholtz equation on a square with Dirichlet an Neumann 
boundary conditions). It is shown in numerical experiments that on normalized mesh 
(with kh = 0.204) the error measured in £2-norm is 0(k3h2). In [19], Thomson and 
Pinsky study dispersive effects for the Galerkin FEM with 

• different local approximation basis (Legendre, spectral and Fourier elements) and 

• different order of local approximation (p = 1... 5). 

From a Taylor analysis similar to the approach applied by Harari and Hughes [11], carried 
out for p = 1,2,3, the general formula[19, p. 267] 

^ - 1 = 0(khf (2) 
k 

is conjected. Furthermore, it is found that the choice of the approximation basis has 
a negligible effect on the dispersive characteristics of the numerical solution (except for 
sightly worse performance of spectral elements), whereas "the higher order p-elements 
exhibit increased accuracy compared to low-order finite elements for the same number of 
degrees of freedom" [19, p. 266]. 

4. Numerical analysis of the reduced wave equation has been, until recently, based 
on a well known proposition on indefinite variational forms, shown by Schatz in 1974 
[16]. This proposition states that, provided the mesh is sufficiently fine, the error of 
the finite element solution is essentially (i.e. up to a constant) equal to the error of the 
best approximation in the subspace that is determined by the choice of the FEM (i.e. 
of the stepsize h and the degree of approximation p). This best approximation is the 
wave closest to the exact solution in the integral norm under consideration. It can be 
numerically computed in the space of piecewise linear, quadratic, etc. approximation if 
the exact solution is known. In particular, for one-dimensional problems the error of best 
approximation in the i^-seminorm is just the interpolant to the exact solution (cf. [11]). 
Consequently, no phase error is present in this numerical wave: the best approximation, 
and hence the finite element solution on sufficiently small mesh, are nondispersive. 

On first glance, this result, which also holds for Helmholtz-type variational forms, 
seems to contradict the findings of dipersion analysis, in particular, the numerical results 
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given by Bayliss et al. [7]. However, the reasons for the difference in both statements can 
be found in more detailed formulations of Schatz' proposition as applied to the Helmholtz 
equation - see Aziz et al.[2], Douglas Jr. et al. [10]. As it is shown in these papers, 
Schatz' proposition holds under the asssumption that k2h is small. In the terminology 
of dispersion analysis one can say that the dispersive effect in the error is negligible on 
"square-normalized" mesh, i.e. meshes with k2h = const. 

For small Jfc, where normalized and square-normalized meshes are of comparable den- 
sity, no significant dispersion effect will be observed also on normalized mesh - which is 
consistent with the results of dispersion analysis - see, e.g., [19, p. 263], Fig. 3a. 

For medium or large Jfc, the assumptions of Schatz' theorem are outside the range of 
practical application, hence the predicted effect has not been observed in the dispersion 
analysis on normalized mesh. 

5. This research had been initiated by observations made while solving different bench- 
mark problems in fluid-solid interaction. Comparing computational results to either an- 
alytical solutions or experimental measurements it was found that the values deviated 
from each other above the low frequency band. Excluding computational truncation as 
a significant contributor to the errors, the conclusion was that the rule to normalize the 
stepsize and the frequency by maintaining a relation hk = const is not sufficient to control 
the error of the standard Galerkin method in the medium and high frequency bands. 

In [14], [15], an analytical study of the Galerkin finite element method - both with 
piecewise linear and piecewise polynomial approximation - is presented. Unlike previous 
results of numerical analysis that hold on square-normalized meshes only (in the asymp- 
totic range of h), all statements in these papers are formulated for normalized meshes 
(preasymptotic range). The analysis is carried out on a one-dimensional model problem 
for the exterior Helmholtz equation with Dirichlet and Robin boundary conditions. While 
in [14] the analysis is restricted to the standard approach with piecewise linear approxima- 
tion (A-version with approximation order p = 1), the second part [15] deals with arbitrary 
order of approximation. As to be expected, numerical estimates are obtained that reflect 
the dispersive character of the finite element solutions. The dispersive character is re- 
flected by a pollution term that is added to the approximation error in the estimates on 
normalized mesh. 

It can be shown that the reduction of the phase error attempted by the Galerkin least 
squares concept is equivalent to reducing the pollution present in the finite element error 
when measured in integral norm [6]. The analysis in [6] also shows that in one dimension 
it is possible to entirely eliminate the phase error without sacrificing the optimal order of 
convergence. 

However, in two dimensions it is not possible to eliminate the pollution in the finite 
element error by any modification of the Galerkin approach (cf. [6], Theorem 3.7). Still, 
the adverse effects of the pollution can be reduced by suitable modification of the stan- 
dart method. Again, this conclusion from the numerical analysis of the problem closely 
corresponds to recent findings from dispersion analysis of the two-dimensional problem 
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[20]. 

6. In this paper, the main results of [14], [15] are discussed in the context of dispersion 
analysis, focusing on conclusions for computational application. Special attention is given 
to the specifics of the application of the h - p-version of the Galerkin FEM, as compared 
to the A-version. Thus, by reviewing, illustrating, and expanding the theoretical work, 
a full analytical and numerical explanation of the error behaviour throughout the range 
of convergence of the finite element solution is given for one-dimensional problems. The 
practically important question is whether this theoretical analysis is relevant to applica- 
tions in two or three dimensions. To the knowledge of the authors, finite element error 
estimates for Helmholtz problems in two or three dimensions have not yet been proven. 
A first numerical assessment of this question is contained in the end of this paper. The 
results, as well as previous nuerical tests carried out by Bayliss et al. [7], show the 
same error behaviour as observed in one-dimensional computations suggesting the con- 
jecture that the one-dimensional study is well suited to provide a basic understanding of 
the error behaviour in two and, possibly, three dimensions. A more detailed analysis of 
higher-dimensional problems will be given in a forthcoming paper. 

The paper is organized as follows: In section 2, the dispersive properties of numerical 
solutions to the reduced wave equation are analyzed and interpreted. In particular, a 
result from [15] on the estimation of the phase lead in Galerkin finite element solutions 
to the ordinary Helmholtz equation is evaluated and compared to previous results of 
dispersion analysis. 

The focus turns to integral error estimates in section 3. Here, previously known 
estimates on fine mesh and the recently proven estimates of [14], [15] are discussed in 
the light of the dispersion analysis given in section 2. In particular, it is shown that the 
finite elment solutions, both for the h- and the h - p-versions of the Galerkin FEM, are 
numerically polluted in the preasymptotic range. The connection to dispersion analysis 
lies in the fact that the pollution terms are of the same size as the dispersive term in the 
frequency of the numerical solution. Also in section 3, error estimates in I2-norm are 
given. Numerical results are presented for three model problems: the exteriour problem 
(ID) with Dirichlet condition at x = 0, a reduced fluid-structure interaction problem (ID) 
and a two-dimensional Helmholtz problem on the unit square with Robin conditions. The 
main conclusions of the investigation are collected once again in section 4. 
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2    Dispersive characteristics of numerical solutions 

Model problem: Consider first a simple one-dimensional model problem - the ordinary 
Helmholtz equation with Dirichlet and Robin boundary conditions; cf. [2], [11], [14],[15]. 
In one dimension, the Robin boundary condition is an exactly absorbing boundary con- 
dition that is obtained from the Sommerfeld radiation condition, given at infinity, via in- 
troduction of an artificial boundary at finite range and subsequent Dirichlet-to-Neumann 
(DtN) mapping - cf. [11] and references therein. 

Let Ü = (0,1) and : 
u"(x) + Jfc2u(x) = -f{x) (3) 

with boundary conditions 

«(0)   =   0 (4) 

u'(l) - iku{\)   =   0. (5) 

Equivalently, one solves the variational problem: Find u € Hl{Sl), u(0) = 0 such that 

B(u, v) = (u', t/) - k2(u(x), v) - iku(l)v(l) = (/(*), t;), (6) 

where the brackets denote the integral product 

(u,v) := / u(x)v(x)dx, 
Jo 

holds for all t; € H1^), v(0) = 0. Here, H1 is the Sobolev space of all functions that are 
square-integrable together with their first derivatives (in the sense of distributions) - see 
[14], [15]. 

Since the discussion is focused on the case of medium to large wavenumber k, it is 
assumed that k >1. 

Results of the dispersion analysis for this problem are given in [11]. A closely related 
example, namely, a Dirichlet fixed bar (leading to the solution of the Helmholtz equa- 
tion with Dirichlet conditions at both boundaries), is considered in [19]. The ordinary 
Helmholtz equation with Robin/ Robin boundary conditions is analyzed in [10], where 
the asymptotic estimate on square-normalized mesh (see introduction) is proven. 

In [2], it is shown for the model problem (6) that the Schatz proposition of quasiop- 
timality holds for the Helmholtz equation with the asumption k2h < c*, where c* is a 
sufficiently small constant ([2], Theorem 3.). 

Using a more general model formulation, where via additional parametrization of both 
the equation and the boundary conditions the modeling of coupled media is included, 
the problem has been investigated by Demkowicz [9]. In this last mentioned paper, the 
computation and the parametrical study of analytical and discrete eigenvalues and inf- 
sup-constants is the prior objective of investigation. 
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Discrete wavenumber: For the numerical solution of the model problem, a discrete 
uniform mesh consisting of n + 1 nods, Xk = {x0 = 0,x\ = h,...,xn = 1} C ft, is 
introduced. As usual, the parameter h = 1/n is called the stepsize of the mesh and the 
intervals A,- = (x,_i,xt) are called finite elements. One seeks approximate solutions that 
are written within each finite elements as polynomials of order p. The parameter p is 
called the approximation degree of the finite element solution. Thus, the finite element 
solution depends on three parameters: the parameter k of the equation itself and the 
numerical parameters h and p. 

Solving the model problem by standard Galerkin finite element approach on uniform 
(in h and p) mesh, one arrives at the discrete system of linear algebraic equations [14], 
[15] 

[Lk] M = {Rk} (7) 

where 

• the discrete operator 

2SP(K)    TP(K) 

[LH] = 

T,(K)   2SP(K)    TP(K) 

TP(K)    2SP(K)       TP(K) 
TP(K)    Sp(K)-iK 

is a complex n x n-matrix, 

• {uh} is the vector of the nodal values of the finite element solution u/e on Xh and 

• Rh is the vector of the discrete right hand side. 

If p > 1, the system (7) is obtained by the method of static condensation (see [15] for 
details), provided the normalized frequency kh = uh/c is such that this process is well- 
defined. 

From the fundamental system of (7) one derives [11], [14] 

«-**~§g (8) 
which determines the discrete wavenumber kh as a function of the parameters k, h and 
p. Here, K = kh = uh/c denotes the normalized frequency. Sp and Tp are, in general, 
rational polynomial functions of k. For p = 1, e.g., one derives [14] 

K2 K2 

S(K) = l-±-     T{K) = -l-T. 

For higher p, the functions S and T formally depend also on the polynomial basis that 
is used for the p-approximation. In the numerical examples, Legendre-based, p-hierarchic 
elements are used - for details see Szabö and Babuska [18]. Solving eq (8) for kh, one 
exhibits two dispersive phenomena characterizing the numerical wave: the cutoff frequency 
and the phase lead w.r. to the exact wave. 
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Cutoff frequency: For certain values of the normalized frequency K, namely, when 
\SP(K)/TP{K)\ > 1, the discrete wavenumber kh is complex with a non-vanishing imagi- 
nary part (note that the exact wavenumber k is real by assumption). 

In Fig.   1, the function cos(khh) = -SP(K)/TP(K) is plotted as a function of the 
normalized frequency K for piecewise linear approximation (p = 1). 

Normalized Frequency K 

Figure 1: Cosine of the normalized discrete wavenumber vs. normalized frequency K for 
p = 1 with cutoff frequency K0. 

ktK0 = y/Yl one has \S(K0)/T(K0)\ = 1. For K < K0, the discrete wavenumber kh 

is real whereas it is fully complex for K > K0. If the exact solution is a propagating wave, 
the numerical solution is propagating only for normalized frequencies K below the cutoff 
frequency K0; for frequencies beyond this value, the numerical solution assumes the form 
of a decaying wave [11], [19]. 

The magnitude of the cutoff frequency depends on the order of approximation p; 
generally speaking, K0 grows with the increase of p. This effect is highlighted in Fig. 2. 

Before reaching the cutoff frequency, i.e. the infinite complex interval, the discrete 
wavenumber is fully complex also on (p - 1) finite intervals, the stopping bands [20], as 
can be seen in Fig. 2 for p = 1... 6. 

Returning to eq (8), in Fig. 3 the cosines of the normalized discrete wavenumber kh 

are graphically compared, for p = 1,..., 6, to the cosine of the normalized frequency. The 
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4 6 8 10 12 

Normalized Frequency K 

14 

10 20 30 

Normalized Frequency K 

40 

Figure 2: Cosine of the normalized discrete wavenumber vs. normalized frequency K 
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Normalized Frequency K 
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Figure 3: Cosine of the normalized discrete wavenumbef vs. normalized frequency K 
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plots show how the discrete wavenumber kh deviates from the exact wavenumber k, and 
how the deviation decreases with increasing p. This phenomenon is investigated in the 
next paragraph. 

Phase lead of the numerical solution:   It is well known that the numerical waves 
display a phase lead w.r. to the exact waves - cf. Fig. 4. 

exact solution  
fern-solution ■$— ~ 

Figure 4: Finite element solution versus exact solution of eq(6) for k = 10, n = 10, p = 1 

On uniform mesh, the discrete wavenumber can be explicitely computed from eq (8). 
See in Fig. 5 results for A; = 10, p = 1: the discrete wavenumber converges to the exact 
wavenumber as h is decreased. The theoretical rate of convergence is easily obtaind from 
Taylor expansion in (8). For p = 1, 

kh - khh = £J- + Ö ((khf) . 

Neglecting higher terms, one has equivalently 

k-kh = kO ({kh)2) . 

This formula is generalized to the case of arbitrary p as follows: [15] 

(9) 

(10) 
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11 

10.5 - 

 1 r 
exact wavenumber k = 10 

discrete wavenumber 

f| M M II I 1 II I I Ml I I I I M Ml 

20 30 
Number of meshpoints 

40 50 

Figure 5: Discrete wavenumber kh versus exact wavenumber k = u/c for k = 10, p = 1 
and n = 4...50. 

Theorem 1 Let kh be the discrete wavenumber for the FEM-solution of eq (6) with 
wavenumber k on uniform h — p mesh. 

Then, ifhk/p< 1, 

<kC(p) (?)* 
holds with 

(11) 

(12) 

where C\ is a constant not depending on h, k and p. 

Remark 1: This statement had been induced (from computational results) as kh/k-\ = 
0{hk)2p in [19]. The analytical result in Theorem 2.1 shows that the decrease of the phase 
difference with growing p is even more substantial - in fact, this difference decreases also 
"almost" by a factor (2p)2p. 

Remark 2: The estimate (11) of the phase difference between the numerical and the 
exact solution will shown to be sharp by numerical evaluation of the model problem. The 
adverse influence of this phase lead on the accuracy of the solution is shown in Fig.l. By 
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estimating the size of the phase lead, one indirectly or qualitatively estimates the error 
of the finite element solution. Quantitative estimates of this error are furnished by error 
estimates in integral norms - see next section. 

A graphical interpretation of estimate (11) is given in Fig. 6, where numerical results 
for ln(kh/k — 1) + 2pln(2p) are plotted versus In(kh). One easily verifies the predicted 
decrease rates of the phase difference. 

Checking the points of intersection of the lines one also observes that C does not 
significantly increase with p. 

k=50, p=l... p=6 

10 ■ 
& 
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-5    0 
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2! 

"S3     -5 
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• * 

-05 0 

Normalized Frequency: ln(kh) 

0-5 

Figure 6: The phase difference as a function of normalized frequency in log-log-scale for 
k = 60 and order of approximation p — 1... p = 6. 

For further interpretation of Theorem 1, the following notations are introduced. 

Definition 1 Considering finite element meshes for Helmholtz problems with parameter 
k, a mesh with stepsize h is called normalized if h is chosen by a constraint in the form 
hk = a where a is an a priori chosen constant independent ofk and h. If a h—p—method 
is applied, the magnitude 

p 
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is called the scale of the h — p—mesh. 

Obviously, for fixed p, normalization of a mesh is equivalent to fixing the scale of the 

mesh. 
The estimate (11) states that the normalized phase difference on normalized mesh 

depends on the scale 6 and the approximation degree p only, 

kh     khh 
p        p 

< C(p)02p+1. 

Indeed, when plotting, for a number of different scales, the normalized phase differences 
divided by 02p+1 it can be seen from Fig. 7 that the measured constant for the given 
example grows with p, in fact more moderately than predicted by the upper estimate (12) 
- find in Table 1 the computed numbers. 

Table 1: h - ^-normalized phase difference from numerical computation compared to 
estimate (11) with Cx = 1 for k = 60, p = 1.. .p = 6 and 0 = 0.05,0.1,0.2 . 

p C, measured C, upper 
estimate 0 = 0.1 0 = 0.2 0 = 0.4 

1 .1659200470 .1637200263 .16647937140 .260551 

2 .1762882103 .1718276503 .1774053010 .340336 

3 .2285314750 .2199826770 .2307020 .51332 

4 .3246366818 .2741436355 .3288611304 .821203 

5 .486355762 .455423447 .494765034 1.35682 

6 .7545962452 .696458213 1.940255003 ° 2.28803 

"phase difference was zero in machine precision 

Remark 3: In the dispersion analysis of the phase difference one considers only the in- 
teriour stencils of eq. (7) - see, e.g., [11, p.71]. Thus, the equation is solved discretely on 
the infinite interval, and the results hold independently of the boundary conditions. The 
same is true for Theorem 1. Note that the statement does not relate to any particular 
boundary conditions. The constant Cv in the estimate follows from approximation prop- 
erties in the space If1 (ft). Hence, though the theorem is given in [15] in the context of a 
particular boundary value problem, it holds equally for other one-dimensional Helmholtz 
problems. 

Remark 4: The observation of the phase lead in the numerical solution has given rise to 
the search for modified methods which reduce this phase lead, i.e. produce a numerical 
wave that is closer (in phase) to the exact wave. This is achieved by the Galerkin least 
squares approach [11], [12], [20], [6]. In the terminology of numerical analysis, this is 
equivalent to the reduction of numerical pollution in the error, measured in integral norm 
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C(p)     1.5 - 

Figure 7: Upper estimate for constant C(p) versus measured values for p = 1... 6 and 
0 = 0.05,0.1,0.2 

[6] - see next section. 

It follows from the theorem that the ft-p-normalized phase difference is not dispersive 
on h — p-normalized mesh with constant scale: according to eq (11) it is bounded by a 
magnitude that depends only on p and the scale 9. Indeed, as to be seen from Fig. 8, 
the relative phase difference is indeed constant for fixed 0 and p. On the other hand, 
the absolute phase difference grows for fixed 9 and p linearly with k, in accord with the 
statement of the theorem, eq (11) - cf. Fig. 9. 

The relative phase difference is obviously a local (i.e. per element) indicator of the 
finite element error. Since n grows with k on normalized mesh, it is intuitively clear that 
with higher Jfe the gloval error also grows since it is obtained by adding up an increasing 
number of local errors. The global error should therefore expected to be dispersive. 

Considering the dependence of the phase accuracy on p, estimate (11), together with 
eq (12) shows that for fixed h - p-scale 9 < 1 and fixed k, the phase accuracy increases 
exponentially in both the factors C(p) and 92p with increasing p. The theorem thus 
generalizes results of previous numerical studies, cf. [19], Table 1. Note that the scale 
is a measure for the number of degrees of freedom (DOF) of the h - p-mesh. On the 
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other hand, if k is increased and one wishes to control the size of the phase lag then much 
higher values of k can be "balanced" by the same number of DOF as p is increased. This 
aspect will be further commented on in the next section. 
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3    Error estimates in integral norms 

While dispersion analysis leads to valuable information on several physical phenomena 
inherent to the discrete solution and, not the least, gives qualitative insight into the 
sources of numerical error, it does not yield, by it's nature, quantitative statements on 
the numerical error itself. These are furnished by error estimates that are concluded 
by the methods of numerical analysis. However, from the viewpoint of computational 
application, both methods have the same goal, namely, to provide the analysist with 
knowledge on the reliability of the numerical solution; it is expected that this knowlegde 
can be used both a priori (meshdesign) and a posteriori (interpretation of the numerical 
solution). 

In this subsection, some recently proven estimates [14], [15] are discussed in the context 
of dipersion analysis. 

Preliminaries: Speaking in terms of functional analysis, the Galerkin finite element 
method consists in finding the solution of a variational problem - that originally is given 
on a normed space V - on a subspace Vh C V. Practically, this subspace is defined by 
the choice of the numerical parameters h and p: Vh = Sl(il). 

Assuming that the variational problem has a unique solution u € V and, if solved with 
restriction to Vh, also a unique solution u/e 6 Vh, these solutions will be called the exact 
and the finite element solution of the problem, resp. In general, the exact solution u does 
not lie in the subspace Vh and the finite element solution is an approximation of u. The 
error of approximation, measured in the norm of V, is 

eIe:=\\u-ufe\\v. 

Since the exact solution is generally not known in applied problems, a priori estimates of 
the finite element error give valuable information on the reliability of the finite element 
solution. 

Frequently these finite element estimates are given in the form: 

e/e < Copt inf ||« - w\\v (13) 
u>evh 

where C^t is independent of h. The infimum on the r.h.s. is the best approximation 
possible for functions in V by functions from Vh. Thus, via estimates of the form (13), the 
results of approximation theory in function spaces are directly applicable to the assessment 
of the finite element error. 

If a finite element solution satisfies an estimate of the form (13) it is called quasioptimal. 

Remark 5: For the subspaces defined by the finite element method, the infimum in (13) 
is reached on a uniquely defined element «&<, € VA. The error ||u—u^H is the minimal error 
of approximation of u by functions from V/,. However, unlike the finite element solution 
u/e € Vh, the function wja is numerically computable only if the exact solution is known 
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analytically, i.e. not in the general case. In this investigation, where the dependence of 
the optimality constant on the parameters k and p is a central issue, the best approxi- 
mation for the exact solution of the model problem is computed to numerically evaluate 
estimates given for Copt(k,p) . 

Specifying now the foregoing abstract discussion for the Helmholtz problems under 
consideration, one identifies V = Hl(ti) and 14 = Sl(ü). The finite-dimensional sub- 
spaces Vh are Hubert spaces. The norm || • ||y is given by the Sobolev norm 

Hli = (HI2 + IMI2)1/2 

where 

W=(/0kl2)' 
is the usual integral L2—norm. Dirichlet-fixed functions can be equivalently measured in 
the H1— seminorm 

Mi := h% 
As usual, the notation i/ro) is used for the mth derivative of v. If a function v is / 

times differentiable (in the weak sense) on Cl, it is said to be of regularity I. The functions 
of regularity / > m > 1 form a Hubert subspace Hm(ü) C H1^). A seminorm is defined 
on Hm by Mm = ||«M||. 

In the error estimates, C is a generic constant that does not depend on the parameters 
of the estimate and may have different meaning in different places of occurence. 

Detailed informationon the foundations of the Finite element method can be found in 
[3], [8], [17]. 

Error estimation on square-normalized mesh: The notation of square-normalized 
mesh is given in the following definition. 

Definition 2 A finite element mesh with parameters h and p is called square-normalized 
if the numerical parameters are constrained w.r. to the wavenumber k by a relation 

hk2 

 <C 
P 

where c* is independent of A, k and p. 

In [15], the following theorem is proven: 

Theorem 2 Let e = u — uje be the error of the Galerkin finite element solution to eq 
(6) on uniform h — p-mesh. Assuming that the exact solution u is of regularity I + 1, 
u € Hl+1(Q), the estimate 

Ni = ||e/||<C1(p)C2^
ro|u|m+1 (14) 
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holds with /PNJ» 

CM = (I) M"1/4> 
m = min(/,p) 

and 

c,= *+(* 
fcfc\ 2 1/2 

provided that h,p are such that the constant C2 is positive. 

It is easy to see that 

^<c' = -?= (15) 
p 712 

is necessary for C2 to be positive. On the other hand, if eq (15) is satisfied then the seoncd 
term in the numerator of C2 is negligible and C2 does not depend on the parameters h, k, p. 
In particular, the estimate (14) is independent of the wavenumber *, i.e. of nondtspersive 

Thus, while the limit of resolution is n = k/y/12, the range of nondispersive conver- 

gence theoretically begins at n = k2y/\2. 

Remark 6: Computational experience with the model problem shows that practically 
one observes optimal convergence in accord with eq (14) also on coarser mesh. However, 
one has, for p = 1, to maintain a scaling in the form k2h = const. - cf. [14]. For higher 
p, a weaker condition applies as will be seen below. 

Theorem 2 is shown in two steps. First, one proves that 

|«-«/e|i < C2\u-s\i 

where s is the best approximation of u for given h and p (i.e. the interpolant in the present 
case). The statement then follows from approximation properties of the finite element 

spaces Sp
h{Sl) [5] - see [15] for details. 

Example 1: Exteriour problem with Dirichlet boundary condition. For numer- 
ical evaluation, consider the model problem (6) with constant inhomogeneous data / = 1. 
Up to scaling factors, the problem then is equivalent to the exteriour Hemholtz problem 
with inhomogeneous Dirichlet data at x = 0. Similar problems have been evaluated by 
Harari/Hughes [11] and Thompson/Pinsky [19]. The analytical solution is a propagating 

wave 1 

u(x) _ _L ((i _ cos kx - sin k sin kx) + i (1 - cos k) sin kx)). (16) 

The finite element solution is computed for p = 1,..., 6; static condensation is applied 
if p > 2. Details of the solution procedure are given in [15]. 
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The error of the finite element solution in .H^-seminorm is 

Ml     =     |«-«/e|? 

i=i ^i i=3 
=   e; - > 

where 

4 = I«!? - h £ (A-ti^j«* + A-UAAu - DJUHDJÜH) (18) 

is the error of piecewise linear approximation (cf. [14]) Further, 

c\j) = /   u'Nl 

and 
D:v = 2ü*ZÜ> 

h 

are the forward differences on A\. Finally, a,- are the coefficients of the bubble modes 
in the local finite element ansatz on element Aj- cf. [15]. 

The error of the best approximation is conveniently computed from 

hai=H?-i:^«i2
+|g|cF)rt (i9) 

In the case that the exact solution u is known, one can easily check numerically whether 
the assumption of square-normalized mesh is indeed necessary for the estimate (14) to 
hold. The numerical evaluation leads to an affirmative conclusion. Namely, one observes 
that 

_\u- Uje\l 
^opt —     I I 

is bounded on square-normalized mesh but grows with k if a constraint k^h = const, is 
applied with 7 < 2. 

For p = 1, these numerical results are discussed in [14]. 
In Figs. 10, 11, similar results are shown for p = 2. One observes in Fig. 10 that 

the relation Copt decreases on coarse mesh for low k. This is due to the fact that, as 
further discussion will show, for small wavenumber the finite element solution converges 
with optimal rate also on normalized mesh. Equivalently, as Fig. 11 shows, Copt is almost 
constant for low k on normalized mesh before beginning to grow oscillatory along a line 
C = an. Note that these examples for p = 2 display the same principal effects as for 
p = 1 - see Figs. 12, 13 from [14] for reference - but only for very high wavenumber. 

In Fig. 14, the relation efe/eopt is shown for p = 4 with the constraint kh/2p = 0.5, 
i.e. more than one halfwave is resolved by one element of order 4 - cf. the discussion in 
[19, p. 274]. 
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Figure 10: Relation e/e/eop( of the finite element error to the minimal error in the h - p 
approximation space in i^-seminom for p = 2 on square normalized mesh with k2h/p = 4 

It is assumed in the following that the exact solution it is a sinusoidal stationary wave 
with frequency k = u/c. Then it is easily checked that 

Akl\u\i < ||u<'+1>|| < Btf\u\i 

where the constants A, B depend only on the amplitude of u. Solutions with this property 
are called oscillatory solutions. 

Considering now the relative error of the FE solution, Theorem 2 yields 

Mi       V 
hkY 
2p)  ' 

(20) 

This means that, for fixed h - p-scale 6 = hk/2p = const., the relative error, measured 
in .H^-seminorm on square-normalized mesh, does not depend on k, i.e. is non-dispersive. 
Since it is known from numerical experience (cf., e.g. [7]), that this is not true on nor- 
malized mesh, the theorem cannot hold in this case. On the other hand, for large k the 
error almost vanishes on square-normalized mesh where the theorem does hold. Indeed, 
when inserting the condition 
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Figure 11: Relation e/e/eopt of the finite element error to the minimal error in the h - p 
approximation space in i^-seminom for p = 2 on normalized mesh with hk/p = 1. 

where c* is some sufficiently small constant - cf. Remark 4 -, into the estimate (20), one 
has for any fixed p 

e<C,(i)', 

hence the error is expected to go down with rate k'1 on sqare-normalized mesh, as k is 
increased. This is confirmed by numerical results - see Fig. 15. 

Hence, while it is practically impossible to realize square-normalization for large k, it 
is, on the other hand, not necessary since in computational applications the error is not 
expected to be close to zero but rather to stay within the limits of some tolerance. 

Error analysis on normalized mesh I: Following the conclusion of the previous 
paragraph, in [14], [15] the analysis has been carried out on normalized mesh, i.e. under 
the assumption that hk < a. In this case, uniqueness of the finite element solution follows 
from a stability estimate 

IK.II < c\\f\\ 
where the constant C does not depend on h, k and p or, equivalently, from a discrete inf- 
sup-condition ([15], Theorem 3.4).  For error estimation in J^-seminorm, the following 
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proposition holds: 

Theorem 3 Assume that the exact solution u is of regularity l + l. Then, ifhk<a<v, 
m 

(21) 

(22) 

I« - «/.|i < d(p) (l + C2k (^ (J^y \u\m+1 

with 

Cx{p) = (|)''(xp)-1/4, 

m = min(/, p) 

and Ci not depending on h, k and p. 

This theorem generalizes the quasioptimal estimate (13) of Theorem 2. Indeed, if 
k2h/2p is bounded then the expression in the brackets is constant, yielding eq (14). Fur- 
thermore, for oscillatory solutions 

follows. Comparing this estimate to estimate (20), one is led to the following definition. 
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Figure 13: Relation e/e/e^p« of the finite element error to the minimal error in the h - p 
approximation space in .fl^-seminom for p = 1 on normalized mesh with hk = 0.1. 

Definition 3 (Pollution): Consider a Helmholtz problem with parameter k, given in 
variational formulation on a normed space V with norm || • ||y. Assume unique existence 
of an exact solution u ^ 0 € V and a finite element solution Ufe € Vh C V. Assume 
further that an estimate of the form 

1 IMIv v '<**   HI 

holds. 
Then, if C can be written in the form 

C(k) = & + CikPF 

where 

• ß > 0,  7 > 0; 

• 0 = hk/p is the scale of the h-p-mesh and 

• Ci, C% are independent ofh,k andp, 

(24) 

(25) 
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Figure 14: Relation e/e/e^ of the finite element error to the minimal error in the h - p 
approximation space in i^-seminom for p = 4 on h-p normalized mesh with hk/2p = 0.5. 

the finite element solution is said to be polluted and the term C2fc7 is called pollution 

term. 

Remark 7: This definition slightly modifies definition 1.2 in [6] to accomodate the con- 
text of this investigation. Note that the pollution term here includes the error of best 
approximation as a factor. It is further assumed that the estimate is known to be sharp 
- either by theoretical proof or by numerical evaluation. 

Remark 8: Speaking in terms of the previous paragraph, a polluted estimate is of dis- 
persive character, whereas a nonpolluted estimate is nondispersive. Hence, any modified 
finite element method reducing or eleminating the pollution effect equivalently reduces or 
eliminates the dispersive effect of the numerical solution. 

For numerical evaluation, consider again the exteriour Helmholtz problem with Dirich- 
let condition at x = 0 (example 1). 

In the case of piecewise linear approximation (p = 1), one obtains from (23) (cf. also 
[14], Theorem 5): 

eKCxihVj-rCikihkf 

where C\, C2 do not depend on h, k (p is fixed). 
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Figure 15: Error on square-normalized mesh for different k and p with k = (pn)1/2 

A typical error plot in log-log-scale, both for the error of the interpolant (best approx- 
imation) and the error of the FE-solution, is shown in Fig. 16. 

For a more detailed discussion, three critical points are displayed on the abscissa on 
this plot, marking four ranges of error behaviour. 

1. n < n0: The point n = n0 is the limit of resolution given by the relation hk = ir 
(two elements per wavelength). For n < n0, the error of the interpolant is 100%. 
Since r < K0 = VT2, the finite element solution is a decaying wave - cf. paragraph 
on cutoff frequencies. Hence, in the first range marked on the plot, below the limit 
of resolution, both the finite element solution and the interpolant do not converge 
to the exact solution at all. 

2- n0<n < N0: The point n = JV*0 is the critical number of DOF for the finite element 
solution, i.e. the minimal meshsize for which the error is (and stays, if the mesh 
is refined) below 100%. In [14] it is shown by physical argument and numerical 
evaluation that 

can be used as an approximate formula to compute N0. 
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Figure 16:   Relative errors of the interpolant and the finite element solution in H1- 
seminorm for p = 1 and k = 100 

For n0 < n < N0, the error of the interpolant goes down exponentially with rate 
—1 as A decreases, whereas the error of the finite.element solution oscillates with 
amplitudes of more than 100%. Note that, in accord with the stability theorem, 
the finite element solution exists and is uniquely defined, but the numerical wave 
can by no means be considered a reliable approximation of the exact wave. In other 
words, in the first range following the limit of resolution, the interpolant converges 
with optimal rate, but the finite element solution is not converging. 

Referring to the error estimate (23), the pollution term is significantly larger than 
the approximation term in the range under consideration. So, for the given example, 
the error of interpolation is « 15% whereas the finite element error still amounts to 
« 100%. 

3. N0<n< Ns: The point n = N, is the point on the abscissa to the right of which 
the finite element solution shows quasiotimal, nondispersive convergence behaviour. 
As a consequence of Theorem 2, the formula to compute N, is 

N. = -k2 
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where, theoretically, c* is a small constant. Following the observation of Remark 4, 
c* = 1 has been assumed in the computations. 

In the interval under consideration, N0 < n < N„ the best approximation further 
converges with optimal rate while the convergence behaviour of the finite element 
solution is still governed by the pollution term. Note that the prevalence of this 
term leads to a superoptimal rate of convergence, namely, exponential decay n-2, as 
compared to n-1 for the best approximation. Thus, the error of the finite element 
solution visibly goes down towards the interpolation error until the pollution term 
becomes negligible at n « N, (i.e. when k2h is sufficiently small). 

This third region is actually the region of practical interest. The finite element 
error is sufficently small while the mesh is still reasonably coarse. In particular, the 
error is within this region if, using the estimate (23) or, equivalently, the result from 
dispersion analysis on the size of the phase difference, one constrains the magnitude 
of k3h2. With a constraint of this form it is guaranteed that the numerical wave 
stays sufficiently close to the exact wave, i.e. is a reliable solution, for all k - see 
Fig. 17. 

4. n > Nt: This is the range where both the interpolant and the finite element solution 
converge with optimal rate n-1. In particular, for the considered model problem 
Copt —> 1 as h —► 0 with the visual effect that the plotted errors coincide to the right 
of JV, within the resolution accuracy of the plot. Both the amplitude and the phase 
error of the finite element solution are very small, to the expense, however, of an 
overrefined mesh. The stepwidth h has to be chosen by square-normalisation w.r. 
to k. 

Remark 9: It is understood that the boundaries of the ranges commented on above are 
not defined precisely as points, but rather in a fuzzy sense. 

While all four intervals outlined here are present for any value of k, their length 
depends significantly on k. In particular, for low wavenumber, as mentioned before, the 
finite element solution is close to the interpolant throughout the range of convergence, 
hence practically only the range 4. occurs in the error plot. Fig. 18. shows that for k = w 
the finite element error is close to the minimal error throughout the region of convergence: 
though slightly different in magnitude, the errors are not distiguishable in the plot. The 
phase lead in this case is not an essential source of numerical error. On the other hand, 
for large k the absolute phase lead of order k3h2 is of prevailing influende; so, for k = 100, 
the finite element error is greater than 100% even if, following the common rule, ten linear 
elements are used to resolve one wavelength - as can be seen from Fig. 16. 

Returning now to the estimate (23) it should be emphasized that the first term reflects 
the error of interpolation (the amplitude error inside the elements, as determined by the 
choice of approximating functions) whereas the second term reflects the phase error. The 
estimate shows that the error of the finite element solution on normalized mesh for large 
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Figure 17: Relative error of the finite element solution in i^-seminorm for p = 1 with 
constraint h2k3 = 1 for k = 1,1000,1. 

wavenumber is essentially equal to the phase error. The phase error in integral norm 
is, in turn, of the same order as the (absolute, not the normalized) phase difference as 
investigated in dispersion analysis. Hence, if one uses the conclusions of dispersion analysis 
to control or minimize the phase lead one equivalently influences the integral error in the 
preasymptotic range, and vice versa. 

On the other hand, the finite element error on square-normalized mesh is essentially 
equal to the error of interpolation; the finite element solution is then "almost" in phase 
with the exact solution. 

Remark 10: The estimate (23) has been shown with the assumption of uniform mesh. 
However, numerical experiments on extremely nonuniform meshes (with p = 1) have 
shown the same error behaviour [6]. 

Example 2: Exteriour problem with Robin conditions. In this second example, 
the ordinary Helmholtz equation is considered on Q = (0,1) with Robin boundary con- 
ditions both at x = 0 and x = 1. The boundary value problem is then equivalent to the 



Dispersion Analysis and Error Estimation of Galerkin FEM 31 

k = pi,p=l 

3 5 7 

Number of elements 

15.     20. 

Figure 18:   Relative errors of the interpolant and the finite element solution in H1- 
seminorm for p = 1 and k = x 

variational problem: Find u € Hl(ti) such that 

B*(u, v) = (u', v') - k\u, v) - ik{u, v) = (/, v), (26) 

where 
(u,v) = u(0)v(0) + u{l)v(l), 

holds for all v € H^Ü). 
This problem has been analyzed by Douglas et al. [10]. Demkowicz [9] has shown that, 

up to additional material parameters, the problem (26) is equivalent to a one dimensional 
fluid structure interaction model. For a detailed analysis of Galerkin methods for one- 
dimensional fluid structure interaction problems, including further numerical evaluation, 
see [4], 

For numerical evaluation, let again / = 1. Due to the absence of Dirichlet boundaries, 
the J^-seminorm is not equivalent to the ff1-norm; the results are therefore measured in 
the norm . 

HI. = (ll«T + K°)l2) 
which will be referred to as the .H^-norm in the following. 

In Fig. 19, the error of the finite element solution in Hx-norm is plotted and compared 
to the error of the best approximation in this norm.  The same principal behaviour is 
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observed as for the Dirichlet-fixed case. However, the optimality constant is not going to 
1 as A goes to zero. The critical points N0 (error of fe-soluiton stays below 100%) are 
at about the same positions in both cases. The plots show that the optimality constant 
tends to a magnitude of « 3.5 independently of k. This observation is in accord with 
the estimate (14), establishing nondispersive convergence behaviour on square-normalized 
mesh. 
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Figure 19: Exteriour problem with Robin conditions: Relative errors of the interpolant 
and the finite element solution in J^-norm for p = 1 and k = 10,100,1000 

Error analysis on normalized mesh II: Turn now to the general estimate for p > 1. 
Comparing eq (23) to the estimation of the phase difference in Theorem 1 one observes 
that the pollution term is, unlike in the case p — 1, not of the order of the phase lead 
if p > 1. By more refined analysis, employing specific properties of the approximating 
polynomials that allow estimation by dual Sobolev norms, one shows that the order of 
hk/2p in the pollution term can be further raised for p > 1 yielding the estimate ([15], 
Theorem 3.7 and Corollary 3.2): 

e < dip) 
fhk\ £)    +Ci(P)C2(p)k(^j 

p+m 

(27) 
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with TO = min(/,p) where / + 1 is the regularity of the solution u.  Assuming maximal 
regularity (/ > p), the estimate becomes 

c < Ci(p) 
hk\2p (g)\ftWftW»(g) (28) 

In this estimate, the pollution term is of the order of the phase difference and the 
constant C\(p) is growing with p by the rate of eq (22), Theorem 3. The second constant 
is theoretically of order 

C2(p) » 2ppl 

Hence, unlike in eq (23) and in the estimate for the phase lead, it could not be excluded in 
the proof of the above mentioned theorem that the constant C% may grow with p. Since 
no numerical evidence has yet been found for this growth of the pollution term with p the 
theoretical estimate of this term is not proven to be sharp - see also the computational 
results for the model problem below. On the other hand, though the growth rate is signif- 
icant by itself it has, even if present, relatively little influence on the practical conlusions 
from estimates (27), (28) as will be seen below. 

Conclusions from the estimate (28) are: 
First, as in the case p = 1, dispersion analysis of the (absolute) phase difference 

and numerical analysis of error norms (on normalized mesh) are equivalent w.r. to the 
reliability of the finite element solution. 

Second, writing 

*«(s)>*«(s)' (29) 

one concludes that the error is in the quasioptimal range provided 

*g)'<c- (3D) 

where c* is sufficiently small. Obviously this is, for higher p, a much weaker condition 
than the assumption k?h < c* of Theorem 1. 

For numerical evaluation, consider again the exteriour problem with constant data. In 
Table 2, numerical values are compared for the critical number N, (inset of quasioptimal 
behaviour) computed for c* = 0.5: 

• as computed from the assumption on h - p square-normalized mesh in Theorem 1 
and 

• as computed from the relation (30), following from the preasymptotic estimate II. 
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Table 2: Critical numbers Ns for the range of asymptotic convergence of the finite element 
solution: prediction from preasymptotic estimate I vs. prediction from preasymptotic es- 
timate II with c* = 0.5. 

p 1 2 3 4 5 6 

N„II 
2500 
2500 

1240 
125 

834 
59 

625 
20 

500 
13 

417 
9 

Hence, if for higher p not the assumption of square-normalized mesh but the weaker 
condition (30) determines the critical number N„ the range of asymptotic convergence is 
significantly enlarged with growing p. As the table indicates, one gains most significantly 
when passing from p = 1 to p = 2 or p = 3. The numbers given for N„ II in Table 2 are 
in accord with numerical results as presented in Fig. 20 

The "bumps" in the error lines in Fig.   20 occur at the meshsizes for which kh = 
In, I = 1,2,  On these particular meshes, the aproximation problem is locally reduced 
to approximizing the function sin a: or cosz, resp. In this case, raising the order of 
polynomial approximation by one does not in general decrease the error of approximation 
- cf. [15]. 

Finally, it is demonstrated on the model problem that the estimate (27) yields a p- 
adaptive rule for error control by appropriate choice of the meshsize. Assuming that the 
error is dominated by the pollution term, put 

e = CUPMP) \2npj (31) 

where e is an a priori given tolerance. The number of DOF is then 

np (32) 

In Table 3, the number of DOF needed to achieve accuracy of 10, 20 or 40%, resp., is 
tabulated where measured magnitudes are compared to the estimated number in eq (32). 
The results are given for wavenumbers k = 10 and k = 100. The estimated number has 
been computed putting C\ = Ci = 1, i.e. not considering the constants of the estima- 
tion. It can be seen that, for the model problem, safe upper estimates for the appropriate 
meshsize are obtained by controlling the order of the pollution term or, equivalently, the 
order of the phase lead of the Galerkin finite element solution. 

Table 3: Controlling the error in integral norm by controlling the order of the phase 
lead: results for k = 50, ifc = 100, p = 1... 6 and e = 0.1,0.2,0.4 . 
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k = 50, p= 1,2,3 

0.1 
u 

I 
3 o.oi 

o.ooi 

50.       100. 500.     1000. 

Number of elements 

k = 50, p = 4,5,6 

0.0001 

0.00001 
5 10. 20. 

Number of elements 

Figure 20: Error of finite element solution versus error of best approximation for k = 50 
and p = 1,2,3; p = 4,5,6. 
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# DOF, Fig. 
# DOF, eg. 
# DOF, Fig. 
# DOF, eg. 
# DOF, Fig. 
# DOF, eg. 

# DOF, Fig. 
# DOF, eg. 
# DOF, Fig. 
# DOF, eg. 
# DOF, Fig. 
# DOF, eg. 

1 
210  72  48  44  40 36 
560  118 70  54  47 42 
T5Ö  56  45  40  30 30 
395  99  63  50  43 40 
92  48  39  36  30 30 
280  86  56  46  41  37 

580  170 120 92  85 78 
1581 281 158 119 100 89 
400  140 105 84  75 72 
1118 236 141 109 93 84 
280  116 87  76  70 64 
790 199 125 100 87 79 

Tolerance e 
0.1 

0.2 

0.4 

0.1 

0.2 

0.4 

wavenumber k 

50 

100 

Graphical illustration for the table is given in Figs. 20, a,b (for k = 50) and in Figs. 
21 a b for it = 100. In the latter figures, the relative error of the finite element solution 
is plotted against the number of meshpoints (a) and against the number of DOF up (b). 
The advantage of the higher p-versions is obvious. 

Also when taking into account the theoretically established growth of the pollution 
term, including the constants CuCt with the approximation order p, one obtains upper 
estimates for the appropriate meshsize that go down with p. This can be seen from Table 
4, where upper estimates for the number of DOF are listed and compared to the measured 

number of DOF. 

Table 4: Controlling the error in integral norm by controlling the pollution term: results 

for for k = 50, p = 1... p = 6 and e = 0.1 . 

P 
# DOF, Fig. 
# DOF, eg. 

1 
210     72     48     44     40     36 
807   215    151    133    126   123 

Remark 11: If the regularity of the solution is smaller than p + 1 - this is, e.g. the case 
when higher approximation is used for problems with unsmooth like Dirac or pie«™ 
constant" data - the estimate (27) applies. The pollution term is then>C2k**~ with m <p 
It's order is lower than the order of the phase difference, but eg (30) still determines the 

range of guasioptimal convergence. 
Taking out the best approximation term, one has 

e<Cx6
m[l + CiC2kOp}. 
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Figure 21: Error of finite element solution as a function of the meshsize n (a) and as a 
function of the number of DOF (b) for k = 100 and p = 1,2,..., 6. 
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The term in the brackets depends only on the order of approximation but not on the 
regularity of the solution. Consequently, for low regularity and high approximation, the 
pollution term essentially does not influence the numerical error. 

Remark 12: The phase accuracy or, equivalently, the pollution term in the finite el- 
emnt solution, can be significantly reduced for one-dimensional problems using suitable 
modification of the Galerkin FEM. While the improvement may be spectacular in one- 
dimensional problems for p = 1, the improvement becomes less significant as p is raised 
to higher order of approximation. 

For two- or three-dimensional problems, where the pollution term cannot be eliminated 
from the error in general (or, alternatively, phase accuracy in all directions of propagation 
is not simultaneously achievable by the same modification - see [6], [20]), the relative im- 
provement of the solution quality is still less significant compared to the one-dimensional 
case. On the other hand, multidimenionsional acoustic computations, specifically those 
with medium or high wavenumbers involved, are extremely costly, hence even slight re- 
ductions of the size of the numerical model may be welcome in practical application. 

Error estimation in Z2-norm: So far, all integral estimates in this section have been 
given in the i^-seminorm, i.e. the square integral Z2-norm of the derivatives of the 
solution. For the model problem under consideration, this norm is equivalent to the L2- 
norm of the solution itself. However, the rates of convergence in both norms are different. 
The following exemplary discussion is given for the case of piecewise linear approximation 

Douglas et al.   showed that for p = 1 and k2h sufficiently small (i.e.   on square- 
normalized mesh) the estimate ([10], Lemma 2.6): 

\\u - U/.U < C(l + *)2Ä2||/|| (33) 

holds with a constant C not depending on h, k. 

Remark 13: Bayliss et al. had stated the following proposition for higher approximation 
- also with the assumption of square normalized mesh ([7], eq (2.5)): Assuming that the 
approximation order of the finite element solution is p and the exact solution is at least 
m = p + 1 times differentiable then 

\\u-ufe\\<Cmhm(l + km+1)\\u\\ (34) 

holds, where Cm depends on m. Using the stability estimate ||u|| < Cfc-1||/|| it is easy to 
see that eq (33) follows from eq (34) for p = 1. 

On normalized mesh, the following proposition holds. 
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Theorem 4 Let u € H^(u),u(0) = 0 and u,e € Sl(ü) C #(1)(ft) be the solution and 
the finite element solution to the VP (6), respectively. Assume that hk < 1. 

Then for e := u — u/e 

||e||<(l + C*)(£)    |u|3 (35) 

holds, where C does not depend on h, k and p. 

The proof of this theorem is similar to the proof of the H1 -estimate ([14], Theorem 
5). Namely, writing u — u/e = u — «/ + u/ — «/e, one has by triangular inequality 

||u - «,.|| < ||u - U/H + ||*|| 

where z := u/ — u/e can be shown to be the solution of the variational problem 

Vu € Vh :     B(z,v) = k2(u — U[,v). 

From the discrete Green's function representation of z it is then concluded that 

IMI < MWu - u,|| 

with C independent of h, k. 
Thus \\u — Ufe\\ < (1 + Ci^)||« — «/||, and the statement follows from a standard 

approximation result. Details can be found in [14]. 
For a first numerical evaluation, consider in Fig. 22 the convergence of the relative 

error in if1-seminorm compared to the /2-vectornorm for k = 100. 
One observes: 

• In both norms, the error oscillates with magnitudes of > 100% on coarse mesh 
before reaching the critical point N0 ("knee" in the plots after which the errors stay 
below 100%) at about the same number n. 

• After entering the range of convergence, both errors initially decrease with the same 
rate n-2. Then, while the error in /2-norm continues to converge with that very 
rate, the error in .fl^-norm deviates to assume it's optimal rate n-1 for large n. 

For an illustration of the dispersive character of the constant C{k) = 1 + C\k in eq 
(35), see Fig. 23. The error for constant scale, computed on a sequence of different 
magnitudes h, k on meshes scaled by hk = 1, is plotted. 

Concluding this paragraph it is emphazised that, unlike the Hl-estimate, the L2- 
estimate is of dispersive character throughout the range of convergence. On the other 
hand, the solution converges with optimal rate in the whole range. 
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ReL error of FE-solution: Hl-seminorm vs. 12-norm. k=10, k=100, p=l 

10. 
M^AMilM-^^riB^^taM 

100. 1000. 10000. 

Number of elements 

100000. 

Figure 22: Relative errors finite element solution: results in i^-seminorm compared to 
/2-vectornorm for k = 10 and k = 100, p = 1 

Singular values of condensation:    For general p, the determining equation for the 
discrete wavenumber k' is eq (8): 

cos(fc/l)==-7^y 
where Sp, Tv are rational polynomial functions of K = kh and, by Theorem 1, 

*-*-*>(£). 
In the theoretical investigation it was assumed that kh < a < * to guarantee that 

the condensation is well defined. On the other hand, it was visible in the numerical tests 
for higher p that acceptable solutions are obtained if more than one half-wave is resolved 
by just one element of polynomial approximation. In dispersion analysis it was shown by 
Taylor expansion that the cutoff frequency also increases with growing p. 

Consequently, the meshsize of the FE-approximation may extend the size of the 
halfwave for p > 2 provided 

• no condensation is applied or 
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Rel. error offe-solutionfor kh = 02,k = 5J00J, p=l 
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Figure 23: Relative error the finite element solution in /2-vectornorm for p = 1 on nor- 
malized mesh with kh = 0.2. 

• condensation is applied but the meshsize h is such that K = kh is not close to any 
discrete eigenvalue of the condensation. 

To find the discrete eigenvalues, one solves the EVP (in A) 

w" + \2w   =   0 

UJ(0) = U>(1)   =   0 

on the one-elemental approximation space 

•    S* = {«> € S^XO) = u>(l) = 0}, 

consisting of all polynomial bubble functions up to order p.   The exact solutions are 
^     aim!     7T*   £tK m   •    •    •• 

The discrete eigenvalues Ai... Ap_i for different p are listed in table 5. 

Table 5: Singular values K = A/, of the local stiffnes-mass-matrix and exact eigenvalues 
of the associated eigenvalue-problem for p = 2,..., 10 
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p/i 1 2 3 4 5 6 7 8 9 
2 3.16228 - - - - - - - - 

3 3.16228 6.48074 - - - - - - - 

4 3.14612 6.48074 10.1060 - - - - - - 

5 3.14612 6.28503 10.1060 14.1597 - - - - - 

6 3.14159 6.28503 9.44318 14.1597 18.7338 - - - - 

7 3.14159 6.28319 9.44318 12.6488 18.7338 23.8858 - - - 

8 3.14159 6.28319 9.42494 12.6488 15.9505 23.8858 29.6460 - - 

9 3.14159 6.28319 9.42494 12.5681 15.9505 19.4030 29.6460 36.0290 - 

10 3.14159 6.28319 9.42478 12.5681 15.7176 19.4030 23.0580 36.0290 43.041 

i * ic 3.14159 6.28319 9.42478 12.5664 15.7080 18.8496 21.9911 25.1327 28.274 

Two-dimensional results   Consider the homogeneous Helmholtz equation 

Au(«1} x2) + k2u(xu x2) = 0 (36) 

on the unit square £2 = (0,1) x (0,1) with nonhomogeneous boundary conditions 

du 
iku + —=g,   onTt ,    3 = 1,2,3,4 

an 
(37) 

where g is .chosen such that the exact solution is 

u = exp(ikx) 

with vector wavenumber k = (ki, k2) and |k| = k. The domain Ü is covered with uniform 
quadratic mesh of stepsize h, and the finite element space is determined by the usual 
bilinear nodal shape functions. The Galerkin finite element solution u/e is then computed 
from the linear system 

(L + fc2M)ufc = r, (38) 

where L is the stiffness matrix, M is the mass matrix, r is the discrete right hand side 
obtained from g and u& is the vector of nodal values of u/e - see, e.g., [18]. It can be 
shown that the best approximations in H1— seminorm and L2—norm are easily computed 
from systems of the form 

LuL = r» 

and 
Mu^ = rl 

resp., where the right hand sides are computed from the exact solution u and the matrices 
on the left hand sides are, except for boundary stencils, identical with the stiffness or mass 
matrix, resp. The numerical results computed for this problem indicate that the Galerkin 
finite element solution in 2D behaves essentially like in the one-dimensional case. 
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Figure 24: Relative errors for 2D Helmholtz problem: finite element solution vs. best 
approximation for k = 10, k = 50 and k = 100 

Consider in Fig. 24 the relative error of the finite element solution, compared to the 
error of best approximation, in l^-seminormfor k = 10, k = 50 and k = 100. The vector 
components of the wavenumber k are ifci = k cos 0, k2 = k sin 0. The results plotted in 
the figure are computed for 0 = x/8. Comparing the results with the one-dimensional 
counterparts in Figs. 16 and 18 one observes similar behaviour of the numerical error. 

In Fig. 25, the errors of the finite element solution and best approximation in H^norm 
and Z2-norm, resp., are shown for k = 50. 

Using the computational results, one can check if the one-dimensional estimates prin- 
cipally hold also for the two-dimensional example. To this, end, consider first for the 
L2-norm the relation „ „ .. „ 

e/e'2-R-(1 + Clfc)  HI 
which was proven for the one-dimensional case (Theorem 4). Now, putting the two- 
dimensional ebat2 := II« - U6a||/||u|| in the place of the one-dimensional ||u - u/||, one 
expects that the values C\ computed from 

Cl = 
l- (y&) (39) 

are constants that do not depend on h, k. The result of the computation is shown in Fig. 
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Figure 25:  Relative errors for 2D Helmholtz problem: finite element solution vs.  best 
approximation in L2-norm and iirl-seminorm for k = 50 

26 and Table 6. 

Table 6: Values C\ computed from (39) 

n/k 100 50 10 
2. 0.8003E-05 0.1706E-01 0.6486E-04 
4. 0.1421E-04 0.1064E+00 0.1191E-03 
8. 0.2967E-04 0.3208E+00 0.2997E-03 
16. 0.7543E-04 0.4424E+00 0.1648E-01 
32. 0.8667E-02 0.4812E+00 0.2103E+00 
64. 0.9278E-01 0.4916E+00 0.4829E+00 
128. 0.4471E+00 0.4943E+00 0.5662E+00 
256. 0.5808E+00 0.4950E+00 0.5862E+00 
512. 0.6059E+00 0.4951E+00 0.5911E+00 
1024. 0.6114E+00 - 0.5923E+00 

A more detailed study of the two-dimensional case, addressing also generalized FEM 
to reduce the pollution error, will be presented in a forthcoming paper. 
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Figure 26: Values C\ computed from (39) 

4    Conclusions 
1. Numerical solutions to Helmholtz problems do not preserve, in general, the nondisper- 
sive property of the physical medium and the exact mathematical solution. While exact 
solutions in the form of propagating waves travel with a velocity that depends on material 
constants of the medium only, both the velocity and even the form of the numerical solu- 
tion depend significantly on the parameter k of the Helmholtz equation. A propagating 
numerical solution displays a phase velocity that is a function of k. 

In addition to the dependence on the physical parameter k, the numerical wave also 
depends on the numerical parameters h (stepsize) and p (polynomial order of approxi- 
mation). From the viewpoint of practical application, dispersion analysis and numerical 
analysis pursue a common goal: a priori assessment of the quality and reliability of the 
numerical solution in terms of the physical parameter k and the numerical parameters h 
and p. 

2. In dispersion analysis, quality and reliability of the numerical solution are related 
to its phase accuracy. Thus, the phase difference between the exact and the numerical 
solution is assessed analytically and by numerical experiment on model problems. The 
result is expressed as a function of k, h and p. It is found that, for any fixed p, the 
phase difference grows with wavenumber k also on normalized (i.e.  the product hk is 
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constrained) mesh. In other words, the phase difference between the exact (nondispersive) 
and the numerical (dispersive) solution is itself dispersive. This is shown analytically for 
Galerkin finite element solutions to one-dimensional Helmholtz problems. 

For the h — p-method, the notation of normalization is generalized to a constraint 
of the scale hk/p, thus controlling the ratio of the wavenumber k and the number of 
DOF, ph'1. While the Galerkin FEM solution is dipersive for any p, the phase accuracy 
improves, for fixed scale 9 = hk/p < 1 and fixed k, significantly with growing p. More pre- 
cisely, the error can be estimated from above by a term proportional to (9 * e/4)2p/p1/2. 
This result analytically confirms former conclusions from numerical experiments. It is 
shown by numerical evaluation in this paper that the upper estimate of phase accuracy 
given in Theorem 1 is sharp, i.e. not generally improvable. 

3. Numerical analysis of the Helmholtz equation leads to error estimates in integral 
norms. Previously known estimates had shown that the relative numerical error, measured 
in H1— norm, for small stepsize h depends on the scale of the mesh only, but not on the 
wavenumer ib. Expanding the analysis to the practically relevant stepsizes h as obtained 
by normalization w.r. to the wavenumber k, one obtains a different result. Namely, it is 
shown (both theoretically and by numerical experiment) that the relative numerical error 
on normalized mesh contains a term of the order of the phase lead. Hence, the numerical 
error in integral norm is dispersive on normalized mesh. The theoretical upper estimates 
are confirmed by numerical evaluation. Dispersion analysis and numerical analysis, while 
using different methods of investigation, thus lead to equivalent conclusions concerning 
the quality and reliability of the numerical solution. 

4. For the one-dimensional model problems considered by the present as well as by 
other authors, both the phase accuracy and the numerical accuracy in integral norm 
improve with increasing p. More precisely, ivf the wavenumber k is normalized by the 
number of DOF (by means of fixing the h - p-scale), then for any fixed k the error 
decreases exponentially with increase of p. Relatively most significant improvement is 
obtained when passing from the standard A-version (with p = 1) of the Galerkin FEM to 
approximation order p = 2 or p = 3. 

The improvement of phase accuracy achieved by stabilization methods is thus less 
significant for higher p as compared to the standard version with p = 1. 

Similar phenomena to the ones discussed here have been observed in one-dimensional 
problems of fluid-structure interaction and two-dimensional problems. The observations 
made so far lead to the conjecture that the theoretical results on the error behaviour, as 
obtained for one-dimensional problems, carry over to the two-dimensional case. While 
a two-dimensional example is evaluated here, results on fluid-structure interaction and 
further analysis of two-D problems will be presented in forthcoming papers. 
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numerical analysis and related topics, with emphasis on the numerical treatment of 
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